Homework \#1 of Topology II

Due Date: Jan 31, 2018

1. Determine the smooth structure of $n-s p h e r e$

$$
S^{n}=\left\{\left(x_{1}, x_{2}, \cdots, x_{n+1}\right) \in \mathbb{R}^{n+1}: x_{1}^{2}+x_{2}^{2}+\cdots+x_{n+1}=1\right\}
$$

(Find out the local coordinates and the transition functions. Do not use Regular Value Theorem.)
2. Let V be a n-dimensional linear subspace of \mathbb{R}^{N}. Prove that V is a smooth manifold and $T_{v} V=V$ for all $v \in V$.
3. (a) Show that for any manifolds X and Y,

$$
T_{(x, y)} X \times Y=T_{x} X \times T_{y} Y
$$

(b) Let $f: X \times Y \rightarrow X$ be the projection map $(x, y) \rightarrow x$. Show that the differential map

$$
f_{*}: T_{x} X \times T_{y} Y \rightarrow T_{x} X
$$

is the projection $(v, w) \rightarrow v$.
(c) Let $f: X \rightarrow X^{\prime}$ and $g: Y \rightarrow Y^{\prime}$ be any smooth maps. Prove that

$$
(f \times g)_{*}=f_{*} \times g_{*}
$$

4. (a) Let $M(n)$ be the space of all $n \times n$ matrices with real entries. Find a smooth structure on $M(n)$ such that it is n^{2} - dimensional manifold.
(b) Let $S(n) \subset M(n)$ be the submanifold consisting of all symmetric matrices. Show the map
$f: M(n) \rightarrow S(n)$ via $f(A)=A A^{t}$ is a smooth map, where A^{t} is the transpose of A.
(c) Find the differential $f_{*}: T_{A} M(n) \rightarrow T_{f(A)} S(n)$.(Hint: you can use the formula $\lim _{t \rightarrow 0} \frac{f(A+t B)-f(A)}{t}$.)
(d) Determine if the identity matrix $I \in S(n)$ is the regular value of f and find the dimension of the orthogonal group $O(n)=\left\{A \in M(n) \mid A A^{t}=I\right\}$.
5. Verify the tangent space to $O(n)$ at the identity matrix I is the vector space of skew symmetric $n \times n$ matrices, i.e. matrices A satisfying $A^{t}=-A$.
6. (a) If X is a compact manifold and Y is a connected manifold, show that every submersion $f: X \rightarrow Y$ is surjective. (b) Show that there exist no submersions of compact manifolds into Euclidean spaces.
7. (a) Suppose that $A: \mathbb{R}^{k} \rightarrow \mathbb{R}^{n}$ is a linear map and V is a vector subspace of \mathbb{R}^{n}. Check that A 币 V implies that $A\left(\mathbb{R}^{k}\right)+V=\mathbb{R}^{n}$.
(b) If V and W are linear subspaces of \mathbb{R}^{n}, show that V 币 W implies $V+W=\mathbb{R}^{n}$.
8. Let X and Z be transversal submanifolds of Y. Prove that if $y \in X \cap Z$, then

$$
T_{y}(X \cap Z)=T_{y} X \cap T_{y} Z
$$

9. Let $f: X \rightarrow Y$ be a smooth map transversal to a submanifold Z in Y. Then $W=f^{-1}(Z)$ is a submanifold of X. Show that $T_{x} W$ is the preimage of $T_{f(x)}(Z)$ under the linear map $f_{*}: T_{x} X \rightarrow T_{f(x)} Y$.
