Homework #1 of Topology II

Due Date: Jan 31, 2018

1. Determine the smooth structure of n - sphere

$$S^{n} = \{ (x_{1}, x_{2}, \cdots, x_{n+1}) \in \mathbb{R}^{n+1} : x_{1}^{2} + x_{2}^{2} + \cdots + x_{n+1} = 1 \}.$$

(Find out the local coordinates and the transition functions. Do not use Regular Value Theorem.)

- 2. Let V be a n dimensional linear subspace of \mathbb{R}^N . Prove that V is a smooth manifold and $T_v V = V$ for all $v \in V$.
- 3. (a) Show that for any manifolds X and Y,

$$T_{(x,y)}X \times Y = T_xX \times T_yY.$$

(b) Let $f:X\times Y\to X$ be the projection map $(x,y)\to x.$ Show that the differential map

$$f_*: T_x X \times T_y Y \to T_x X$$

is the projection $(v, w) \to v$.

(c) Let $f: X \to X'$ and $g: Y \to Y'$ be any smooth maps. Prove that

$$(f \times g)_* = f_* \times g_*.$$

4. (a) Let M(n) be the space of all $n \times n$ matrices with real entries. Find a smooth structure on M(n) such that it is $n^2 - dimensional$ manifold.

(b) Let $S(n) \subset M(n)$ be the submanifold consisting of all symmetric matrices. Show the map

 $f: M(n) \to S(n)$ via $f(A) = AA^t$ is a smooth map, where A^t is the transpose of A.

(c) Find the differential $f_*: T_A M(n) \to T_{f(A)} S(n)$.(Hint: you can use the formula $\lim_{t \to 0} \frac{f(A+tB) - f(A)}{t}$.)

(d) Determine if the identity matrix $I \in S(n)$ is the regular value of f and find the dimension of the orthogonal group $O(n) = \{A \in M(n) | AA^t = I\}$.

- 5. Verify the tangent space to O(n) at the identity matrix I is the vector space of skew symmetric $n \times n$ matrices, i.e. matrices A satisfying $A^t = -A$.
- 6. (a) If X is a compact manifold and Y is a connected manifold, show that every submersion $f: X \to Y$ is surjective. (b) Show that there exist no submersions of compact manifolds into Euclidean spaces.

7. (a) Suppose that $A : \mathbb{R}^k \to \mathbb{R}^n$ is a linear map and V is a vector subspace of \mathbb{R}^n . Check that $A \overline{\pitchfork} V$ implies that $A(\mathbb{R}^k) + V = \mathbb{R}^n$.

(b) If V and W are linear subspaces of \mathbb{R}^n , show that $V \stackrel{-}{\sqcap} W$ implies $V + W = \mathbb{R}^n$.

8. Let X and Z be transversal submanifolds of Y. Prove that if $y \in X \cap Z$, then

$$T_y(X \cap Z) = T_yX \cap T_yZ.$$

9. Let $f: X \to Y$ be a smooth map transversal to a submanifold Z in Y. Then $W = f^{-1}(Z)$ is a submanifold of X. Show that $T_x W$ is the preimage of $T_{f(x)}(Z)$ under the linear map $f_*: T_x X \to T_{f(x)} Y$.